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Abstract

As the number of nanomaterial workers increase there is need to consider whether biomonitoring 

of exposure should be used as a routine risk management tool. Currently, no biomonitoring of 

nanomaterials is mandated by authoritative or regulatory agencies. However, there is a growing 

knowledge base to support such biomonitoring, but further research is needed as are investigations 

of priorities for biomonitoring. That research should be focused on validation of biomarkers of 

exposure and effect. Some biomarkers of effect are generally non-specific. These biomarkers need 

further interpretation before they should be used. Overall biomonitoring of nanomaterial workers 

may be important to supplement risk assessment and risk management efforts.
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1. Introduction

The utility and novelty of engineered matter at the nanoscale is driving a revolution in 

science and commerce (Roco, 1997; Stirling, 2018). Engineered nanomaterials (ENMs) 

offer the opportunity to make products lighter, stronger, more conductive, and generally 

“smarter” (Iavicoli et al., 2014a,b; Navya and Daima, 2016; Thiruvengadam et al., 2018). 

ENMs entered commerce in the early 2000s and found utility in many sectors and 

commercial products. Indeed, workers have been and are expected to be increasingly 

involved and exposed to ENMs in various applications as well as along their whole life-

cycle, from research to end-life or recycling (Schulte et al., 2016).
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Simultaneously, occupational health concerns have emerged regarding the possible impact of 

such nano-sized materials on the health of exposed employees. These concerns were based 

on previous evidence about the effects of ultrafine particulate matter derived from air 

pollution epidemiological studies, data extrapolated from investigations on the health 

consequences of diesel and welding fume exposures that may contain incidental 

nanoparticles (NPs), and preliminary toxicological findings obtained in vitro and in vivo 

models with ENMs (Iavicoli et al., 2011, 2012, 2016; Leso et al., 2017; Oberdörster and Yu, 

1999; Peters et al., 2011; Stone et al., 2017).

Assessing the occupational risks derived from ENM exposure is a challenging task. This is 

because of difficulties in characterizing their potential hazard due to their huge physico-

chemical variability, as well as in adequately assessing environmental exposure and 

individual response. In fact, to date, although there has been extensive research, no 

standardized environmental monitoring strategies to assess workplace and breathing zone 

exposures, nor the physico-chemical ENM features to be measured as the most effective 

dose metric parameters are widely agreed upon (Brouwer et al., 2009; Brouwer, 2010; 

Pietroiusti et al., 2018). Similarly there are no instances of regular monitoring of nano-

material workers for biomarkers of effect. This is in part likely because these markers are not 

specific and have not been fully validated as indicators of adverse effects of specific 

exposure.

Nonetheless, biological monitoring may contribute to the identification of potential hazards 

of ENMs and to the assessment of occupational exposure to such xenobiotics; therefore, 

supporting a more adequate assessment and management of risks (Schulte and Hauser, 

2012). In this study, the current status of biological monitoring for ENM workers will be 

addressed.

2. Methods

In order to review the available scientific literature on biological monitoring, a framework 

matrix was employed (Fig. 1). pubMed, Scopus, and Web of Science databases were 

searched. Our search strategy was aimed to identify issues concerning the development and 

use of biomarkers that may be helpful to address the different steps along (Fig. 1) the 

continuum of occupational safety and health actions from hazard identification to risk 

management (x-axis) (Schulte and Hauser, 2012). Additionally, the literature related to 

various classes of biomarkers (y-axis) was assessed for each category and subcategory in the 

continuum. The objective of the search was to identify papers that raised issues in the use of 

biomarkers for a cell or cells in the matrix. These issues will be discussed under the 

categories of biomonitoring, epidemiological research, and medical surveillance. However, 

as the major findings were from toxicological research on ENMs, these will be presented to 

establish a foundation for thinking about the utility of various types of biomarkers for other 

purposes in the continuum. There is a rich literature on the validation of biomarkers that can 

be consulted regarding their utility (Bonassi and Au, 2002; Schulte and Hauser, 2012; 

Schulte and Talaska, 1995).
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3. Hazard identification

Since the late 1990s, there has been a growing knowledge-base about the potential adverse 

effects of ENMs. This seems a challenging issue due to the diverse universe of materials 

characterized by combinations of a large number of physico-chemical characteristics and 

other parameters that may include size, shape, chemical composition, solubility, crystalline 

structure, charge, surface characteristics, attached functionalized groups, agglomeration, and 

impurities. In humans, ENMs generally have not yet been reported to cause adverse health 

effects (Bergamaschi, 2012). This may be due to a number of factors: the precautions 

adopted by the scientific and commercial communities to control exposure levels, the 

guidance from authoritative agencies responsible for the development of nanotechnology, 

the small number of involved workers, and the limited time since first exposure, which is 

generally 15–20 years, considering the periods that such products were introduced in 

commerce (Fig. 2).

Considering that nanotechnology is an enabling technology diffused through many 

productive sectors, the mass of produced ENMs is generally small. In these complex 

industrial scenarios, ENM dose-response relationships may be underestimated by the 

confounding influence of other possible chemical co exposures. Nevertheless, hazard 

research in the last 15 years has shown that some types of ENMs appears to have the ability 

to result in adverse effects in animals. Table 1 shows an overview of the toxicological 

findings. Interestingly, toxicological evidence may be helpful in extrapolating information 

for biological monitoring.

3.1. In vitro studies

In vitro studies provide information concerning molecular effects of ENMs on cellular 

models, therefore suggesting possible modes of action in relation also to the intrinsic ENM 

physico-chemical features. This information may be important to define the hazardous 

properties of such nanoscale materials, a critical step in the identification of suitable 

biomarkers. Different ENMs, including silver (Ag)- (Müller et al., 2018; Murphy et al., 

2016), titanium dioxide (TiO2)- (Kongseng et al., 2016; Patil et al., 2016; Renwick et al., 

2001), zinc oxide (ZnO)- (Patil et al., 2016), silica (SiO2)- (Breznan et al., 2017), 

magnesium oxide (MgO)-NPs (Mahmoud et al., 2016), and carbon based-NMs (Chatterjee 

et al., 2017; Chortarea et al., 2017; Kim and Yu, 2014), demonstrated cyto-toxic, 

inflammatory, and oxidative stress effects, as well as the reduction of specific cellular 

function in vitro models. The small ENM size, resulting in a high surface area to volume 

ratio, may enhance ENM biological reactivity and relative toxicity (Guichard et al., 2016; 

Kim and Ryu, 2013; Soares et al., 2016; Uboldi et al., 2016).

Additionally, for adequate hazard identification, the chemical nature and surface chemistry 

should be also considered as possible influencing factors, since differently composed ENMs, 

i.e., metal oxide-NPs vs multi-walled-carbon nanotubes (MWCNTs) (Xia et al., 2013), Ag-

NPs vs graphene oxide nano-sheets (Ivask et al., 2015), and differently functionalized NMs 

(Chatterjee et al., 2017; Magdolenova et al., 2015), resulted in diverse cytotoxic effects that 

could be also dependent on cellular type specificity (Chatterjee et al., 2017). The crystalline 

structure of the nano-compounds could also affect the toxicity of some ENMs, as in the case 
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of anatase and rutile TiO2-NPs (Sayes et al., 2006). Shape-dependent effects have been 

reported for several ENMs, including Au- and TiO2-NPs, and carbon based-ENMs (Allegri 

et al., 2016; Chithrani et al., 2006; Hamilton et al., 2009; Park et al., 2003; Porter et al., 

2013; Öner et al., 2017). ENMs with a high aspect ratio morphology have raised particular 

concern in the field of respiratory toxicology, because they may induce toxicity similar to 

other fibrous substances, e.g., asbestos (Donaldson et al., 2011). Overall, these data may 

support a different behavior of ENMs according to their primary features as well as also in 

relation to those properties secondarily acquired when coming in contact with different 

culture media (Ritz et al., 2015).

3.2. In vivo studies

In vivo studies are essential to define the toxico-kinetic and dynamic behavior of ENMs and 

particularly to identify early adverse effects and possible target organ damage whose 

investigation, through biomarkers detected in accessible biological matrices, may be 

important for a suitable planning of biological monitoring programs. As previously 

mentioned, the biomolecular interactions that ENMs may experience when in contact with 

biological fluids, strictly dependent on ENM exposure route, can determine the formation of 

the so called “protein corona,” which may affect ENM dynamic profile, and therefore, 

biological monitoring findings (Monopoli et al., 2012).

3.2.1. Preclinical alterations—As reported in cellular models, and also in human and 

animal experiments, ENMs elicited the activation of oxidative stress responses that could be 

monitored through the reduction in plasma levels of anti-oxidant defense systems. This was 

detected in workers involved in the manufacture and/or application of ENMs in Taiwan, and 

also found after a six month follow up period (Liao et al., 2014; Liou et al., 2012, 2016). 

Additionally, the increased exhaled breath condensate (EBC) concentrations of lipid, 

nucleic, and protein oxidation markers were detected in workers exposed to Fe2O3- and 

Fe3O4-NPs (Pelclova et al., 2016a), MWCNTs (Lee et al., 2015), and TiO2-NPs (Pelclova et 

al., 2017a, 2017b) compared to controls. In such epidemiological investigations, a dose-

response correspondence was demonstrated according to the ENM environmental 

monitoring concentrations (Pelclova et al., 2016a, b) as well as the increase in risk levels 

established through a control binding nano-tool risk assessment approach (Liao et al., 2014).

Comparably, in animal models, reductions in plasma anti-oxidant defense systems and 

increased levels of Reactive Oxygen Species (ROS) and malondialdehyde (MDA) could be 

determined with SiO2 (Du et al.,2013; Liu and Sun, 2013), Ag (Genter et al., 2012; Martins 

et al., 2017), Ag-NPs in coexposure with TiO2-NPs (Martins et al., 2017), Fe2O3- NPs 

(Sundarraj et al., 2017), and multi-walled carbon nanotube (MWCNTs) exposures (Reddy et 

al., 2011).

Regarding inflammatory response, blood levels of fibrinogen and pro-inflammatory 

cytokines were increased in workers exposed to nano-sized carbon black and MWCNTs 

(Fatkhutdinova et al., 2016; Liou et al., 2012; Vlaanderen et al., 2017; Zhang et al., 2014) as 

well as to TiO2-NPs compared to controls (Zhao et al., 2018). Conversely, when comparing 

serum proteins associated with inflammatory responses in ENM exposed and not-exposed 
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workers in research laboratories, significant increases in CD40, TNFR2, and CD62P serum 

concentrations were evident during the first shift of a working week and at the end of the 

week in exposed employees (Glass et al., 2017). These findings may suggest an anti-

inflammatory and suppressive homeostatic cellular response in relation to an immune 

activation.

Enhanced levels of leukotrienes were detected in the EBCs of subjects occupationally 

exposed to TiO2-NPs (Pelclova et al., 2016c) and MWCNTs (Lee et al., 2015). Comparably, 

increased concentrations of 8-isoprostane in EBC (Liou et al., 2017) and enhanced fractional 

exhaled nitric oxide were reported in workers exposed to metal oxide ENMs (Wu et al., 

2014), also when the analysis was stratified according to the type of NM exposure (SiO2, 

TiO2, indium tin oxide-NPs), while potential fibrotic and pro-inflammatory biomarkers were 

detected in the sputum of MWCNT-involved workers (Fatkhutdinova et al., 2016). 

Conversely, in research laboratory workers handling ENMs, no significant alterations in 

exhaled nitric oxide could be detected (Glass et al., 2017).

Alterations in blood acute-phase proteins and cytokine concentrations were also detected in 

animal models through acute to sub-acute administrations of different types of metallic or 

metal oxide-NPs such as TiO2- (Park et al., 2009), CeO2- (Nalabotu et al., 2011; Srinivas et 

al., 2011), Fe3O4- (Chen et al., 2010; Park et al., 2010; Srinivas et al., 2012)-, Ag- (Holland 

et al., 2015, 2016), and SiO2-NPs (Downs et al., 2012; Du et al., 2013; Lu et al., 2011) as 

well as with carbon-based NPs (Erdely et al., 2009). Interestingly, such preclinical 

alterations, whatever the biological matrix employed, may function both as indicators of 

early effects before clinical manifestations may occur and as indirect markers of exposure 

although with a low specificity for ENMs (Aragon et al., 2017; Erdely et al., 2009; 

Shvedova et al., 2016).

3.2.2. Pathological alterations—Pathological alterations pertain to a greater 

understanding of the potential for adverse effects following exposure. In highly exposed 

nanoscale carbon black workers, alterations in pulmonary functional parameters were 

observed compared to controls. This suggests possible adverse respiratory alterations (Zhang 

et al., 2014), although other investigations failed to detect such changes in MWCNT (Lee et 

al., 2015; Liao et al., 2014; Vlaanderen et al., 2017) and TiO2-NP exposed employees 

(Pelclova et al., 2016c, 2017b) as well as in workers handling ENMs in research laboratories 

(Glass et al., 2017).

Interestingly, a significant dose-dependent increase in the pulmonary surfactant protein D 

serum levels, as a biomarker of lung damage, was detected in workers employed in a 

packaging workshop of a nano-TiO2 manufacturing plant in eastern China (Zhao et al., 

2018). In these workers, alterations in cardiovascular disease markers, i.e., VCAM-1, 

ICAM-1, LDL, and TC, were associated with occupational ENM exposure (Zhao et al., 

2018). Haematological alterations were reported in animals after oral or intra-gastric 

exposure to ZnO-NPs (Park et al., 2014) and TiO2-NPs (Vasantharaja et al., 2015) as well as 

after dermal exposure to hydroxyapatite-NPs (Parayanthala Valappil et al., 2014), while 

could not be detected after a sub-acute inhalation of CeO-NPs (Gosens et al., 2016). 

Increased ALT concentrations and decreased albumin levels in serum as markers of 
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hepatocyte injury, confirmed also by histopathological alterations, were reported in rats 

intratracheally instilled with CeO2-NPs (Nalabotu et al., 2011). The hepatotoxic potential of 

ENMs has been also documented in animals orally treated with ZnO- (Park et al., 2014), 

Ag-, and Au-NPs (Shrivastava et al., 2016). Significant nephrotoxic alterations principally 

induced by metallic NPs have been demonstrated through the assessment of the kidney 

injury molecule-1 (KIM-1) urinary level (Blum et al., 2015; Iavicoli et al., 2016) as well as 

by the BUN and creatinine serum biomarkers following an oral exposure to Cu- (Chen et al., 

2006; Lei et al., 2008; Liao and Liu, 2012; Sarkar et al., 2011), Au- (Shrivastava et al., 

2016), and mesopourus silica-NPs (Li et al., 2015). Indicators for the abovementioned 

alterations may function as potential biomarkers helpful to define target organs of ENM 

toxicity and, in turn, suggest potential pathological health conditions susceptible to be 

aggravated by ENM exposure.

3.2.3. Genotoxicity—Due to their small particle size, large surface area, and physico-

chemical characteristics, NPs exhibit unpredictable genotoxic properties. Studies on workers 

failed to show genotoxic effects (Liao et al., 2014; Liou et al., 2012) while a general dose-

dependent increase in DNA strand breaks and micronucleus (MN) frequency was found in 

human peripheral blood cells treated in vitro with metal or metal oxide-NPs (Colognato et 

al., 2008; Di Bucchianico et al., 2013; Flower et al., 2012; Ghosh et al., 2010, 2012, 2013; 

Kang et al., 2008, 2011; Paino et al., 2012; Soni et al., 2017; Tavares et al., 2014), carbon-

based NPs (Cveticanin et al., 2010; Öner et al., 2017; Tavares et al., 2014), and dendrimers 

(Ziemba et al., 2012). Concerning in vivo results, a significant increase in such parameters 

was detected in the peripheral blood cells of TiO2- (Song et al., 2012; Trouiller et al., 2009) 

and ZnO-NP treated animals (Patil et al., 2016), as compared to controls, and a dose-

dependent increase in DNA fragmentation percentage was detected in lymphocytes of SiO2 

and Fe2O3-NP treated rats (Jiménez-Villarreal et al., 2017). However, positive results were 

not always confirmed and conflicting results were reported also for other metallic or metal 

oxide ENMs (Balasubramanyam et al., 2009; Chen et al., 2014; Cordelli et al., 2017; Downs 

et al., 2012; Lindberg et al., 2012; Sadiq et al., 2012; Singh et al., 2013a, b; Song et al., 

2012; Tiwari et al., 2011). This may suggest a possible influencing role of different ENM 

physico-chemical features, routes of exposure, and administered doses.

3.3. “Omic techniques” for hazard identification

Traditional toxicology is rapidly evolving into a system-based approach, able to capture 

almost all the interactions between living systems and endogenous and/or exogenous 

xenobiotics (Balbo et al., 2017). “Omic” techniques may reveal methods helpful to assess a 

wide range of biological responses induced by ENM exposures, therefore, they may be 

promising tools for the development of novel biomarkers of exposure and early effect 

(Fadeel, 2015; Schulte and Hauser, 2012). These techniques currently include genomics, 

transcriptomics, proteomics, and more recent approaches, such as metabolomics, and 

adductomics involved into gene expression and its consequences.

3.3.1. Genomics—Genomic studies may provide the opportunity to detect injury at the 

molecular level and the signaling pathways involved in organ damage long before the 

clinical symptoms occur (Andersen and Krewski, 2009; Klaper et al., 2014). Several 
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toxicogenomic studies have investigated the in vitro and in vivo response, principally 

pulmonary gene expression changes, to NMs using DNA microarray analysis (Aydın et al., 

2017; Costa et al., 2018; Decan et al., 2016; Ellinger-Ziegelbauer and Pauluhn, 2009; Gao et 

al., 2012; Husain et al., 2013; Li et al., 2013, 2017; Pacurari et al., 2011; Snyder-Talkington 

et al., 2015). However, accessible and more easily applicable biological matrices, i.e., blood 

or peripheral blood cells, have been rarely employed to assess systemic alterations; 

determining these correlations in animal models is an important part of practical biomarker 

validation. The expression of genes involved in immune, inflammatory and oxidative stress 

responses was affected by Au-NP-oligonucleotide complexes in human peripheral blood 

mononuclear cells (Kim et al., 2012), by graphene oxide also functionalized with amino 

groups in T lymphocytes and mononuclear cell lines (Orecchioni et al., 2017). In in vivo 

experiments, blood expression changes in genes involved in inflammation, oxidative stress, 

growth factors, tissue remodeling, and endothelial function were obtained in circulating 

blood cells of animals treated with SW- or MWCNTs (Erdely et al., 2009).

3.3.2. Transcriptomics—Transcriptomics aims at quantifying changes in gene 

expression through the enumeration of the number of mRNA copies (Costa and Fadeel, 

2016). A significant increase in the mRNA expression of KL-6, a marker for the diagnosis 

and monitoring of interstitial lung diseases, as well as its up-stream and down-stream genes, 

were detected in accessible biological matrices, i.e., whole blood and sputum samples 

collected from workers exposed to MWCNTs compared to controls (Fatkhutdinova et al., 

2016; Shvedova et al., 2016). In vitro studies also reported mRNA expression changes in 

macrophages exposed to mesoporous silica-NPs and PEGylated mesoporous silica-NPs at 

doses that do not elicit acute cytotoxicity (Yazdimamaghani et al., 2017). Numerous blood 

mRNAs were significantly up- or down-regulated post-MWCNT inhalation in animals 

developing lung pathological changes (Dymacek et al., 2015; Snyder-Talkington et al., 2013, 

2016). Therefore, changes in blood mRNA expression, may potentially serve as suitable 

biomarkers for ENM-induced lung pathological changes, providing less invasive 

measurements, compared to tissue analysis, that can be taken at shorter intervals with lower 

costs (Snyder-Talkington et al., 2016).

3.3.3. Proteomics—Proteomic investigation may be helpful to identify candidate protein 

biomarkers for the evaluation of ENM early effects (Matysiak et al., 2016). In vitro results 

reported differently expressed proteome profiles related to cellular viability, oxidative stress, 

and heat response processes in human lung cells exposed to MWCNTs (Phuyal et al., 2018) 

as well as in the human monocytes treated with to Au-, CuO-, and CdTe-NPs (Tarasova et 

al., 2017). On the other hand, in vivo studies demonstrated an affected expression of proteins 

associated with metabolism, oxidative stress, and immune responses following TiO2-NP 

inhalatory exposure (Maurer et al., 2016). More recently, the possible employment of 

proteomic analysis for the detection of protein carbonylation patterns as persistent, sensitive, 

and indirect biomarkers of ENM induced oxidative stress reaction has been explored 

(Driessen et al., 2015; Riebeling et al., 2016). Overall, the suitability of these proteomic 

changes as biological indicators of effect should be firstly confirmed by traditional 

biochemistry, thus supporting their effectiveness in detecting early NP toxicity.
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3.3.4. Metabolomics—Metabolomics is the comprehensive analysis of all the 

metabolites of an organism or specified biological samples (Robertson et al., 2011). In vitro 

metabolomic data, demonstrated that CeO-, SiO2- and CuO-NPs could affect the lipidome 

profile, and compromise the Phase II conjugational capacity in exposed hepatic cells 

(Kitchin et al., 2017). Differently hydroxylated or carboxylated functionalized CNTs 

induced alterations in amino acid metabolisms in hepatic and bronchial cells (Chatterjee et 

al., 2017) while an antioxidant effect was observed for chitosan-coated or ceria supported-

Au-NPs in human peripheral blood cells (Palomino-Schätzlein et al., 2017). Concerning the 

metabolic profiling of ENM effects, as a rapid in vivo screening for nano-toxicity 

biomarkers, analyses performed in serum and urine of rats treated with Cu- (Lei et al., 2008) 

and TiO2-NPs (Bu et al., 2010; Tang et al., 2010, 2011) provided evidence for the 

hepatotoxicity, nephrotoxicity and alterations in energy metabolism induced by these NPs. 

Other studies reported the ability of Ag- (Hadrup et al., 2012; Xie et al., 2018), Fe2O3-(Feng 

et al., 2010), SiO2-NPs (Lu et al., 2011; Parveen et al., 2012), carbon 14-labeled C60 

fullerenes (Sumner et al., 2010) and CNTs (Lin et al., 2013) to affect the liver, energy, lipid, 

glucose, and amino acid metabolism as assessed by the alterations found in serum and urine 

metabolic pathways, while amorphous SiO2, zirconium dioxides, and barium sulphate-NPs 

failed to show a relevant impact on plasma metabolome patterns (Buesen et al., 2014). 

Although interesting, the different and not always well characterized ENMs employed, as 

well as the lack of standardized analytical techniques and procedures, make the results 

difficult to compare, and no definite conclusions to be extrapolated.

3.3.5. Adductomics—Adductomic approaches have been developed to comprehensively 

describe toxicological features in response to a genotoxic xenobiotic insult (Hemeryck et al., 

2016; Villalta and Balbo, 2017). Specific classes of DNA adducts are those resulting from 

the reaction of ROS (%OH) with DNA, i.e., the 8-hydroxy-deoxy-guanosine (8-OH-dG). In 

field studies, 8-OH-dG concentrations were measured in easily available biological matrices 

collected from exposed workers, although with variable results. While no significant 

alterations were detected in urine, and plasma samples from employees of 14 manufacturing 

plants in Taiwan (Liao et al., 2014; Liou et al., 2012), increased concentrations were more 

recently reported in urine and white blood cells of workers exposed to metal oxide ENMs, 

whatever the type of ENM was considered (Liou et al., 2016, 2017), and in EBCs obtained 

from TiO2-NP exposed subjects (Pelclova et al., 2016b). This DNA damage has been also 

investigated in vitro models exposed to metal or metal oxide ENMs, which demonstrated 

significant increases (Ng et al., 2017) although with a cellular type specificity (Mahmoud et 

al., 2016), and in Ag-NP treated animals that showed increased urinary concentrations of 

this biomarker (Chuang et al., 2013). The field of DNA adduct research is a highly 

promising area due to their potential. This is primarily related to the fact that, for instance, 

adducts may be interpreted as indicators of internal doses, biologically effective dose, and 

early effect, as well as susceptibility. Though the need exists to be validated specifically for 

each purpose.

3.3.6. Epigenetics—Epigenetics refers to heritable, reversible changes in gene 

expression occurring without alterations in DNA sequence (Shyamasundar et al., 2015; 

Sierra et al., 2016). DNA methylation, histone tail, and microRNA modifications are 
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considered useful epigenetic markers. Recent research demonstrated that CNTs (Brown et 

al., 2016; Chatterjee et al., 2017; Li et al., 2016; Öner et al., 2017; Tabish et al., 2017), Au- 

(Tabish et al., 2017), TiO2-(Bai et al., 2015; Patil et al., 2016), SiO2-(Gong et al., 2010, 

2012; Mytych et al., 2017), ZnO-(Choudhury et al., 2017), and CuO-NPs (Lu et al., 2016) 

were able to induce changes of specific methylation patterns, including tumor suppressor-, 

inflammatory-, and DNA repair genes in vitro and in vivo models. Interestingly, a 

significantly lower global DNA methylation in white blood cells collected from workers 

exposed to nanoscale indium tin oxide in plants in Taiwan was recently reported by Liou et 

al. (2017), while Ghosh et al. (2017), although failing to detect significant differences in 

global methylation, found significant changes in genespecific DNA methylation in MWCNT 

exposed workers compared to controls.

Histone conformational modifications may either facilitate or depress the access of 

transcriptional machinery to the promoter region of some genes, leading to gene silencing or 

activation, respectively. As concerns ENMs, a global hypoacetylation in human breast 

carcinoma cells causing transcriptional repression of anti-apoptotic genes, thereby 

promoting cellular death, was detected after cadmium telluride quantum dots exposure 

(CdTe-QDs) (Choi et al., 2008). Ag-NPs were reported to affect histone post-translational 

modifications thus inducing a reduction in hemoglobin levels in mouse erythroleukemia 

cells (Qian et al., 2015). Non-coding microRNAs have been investigated in an attempt to 

identify fine, regulator molecules in ENM induced toxicity since they can modulate gene 

expression through the interaction with other epigenetic processes (Zhao et al., 2016; 

Peschansky and Wahlestedt, 2014). The changes in the microRNA expression profiling 

induced by exposure to Fe2O3-NPs, CdTe-QDs, Au-, Ag-NPs and MWCNTs were 

demonstrated to globally affect the mRNA and protein output of human treated cells, 

subsequently affecting many key biological patterns (Eom et al., 2014; Li et al., 2011a, b; 

Ng et al., 2017). Micro-RNA expression changes, implicated in inflammation and immune 

reactions, were found in the lungs of mice intratracheally exposed to TiO2-NPs 

(Halappanavar et al., 2011). Changes in the blood levels of liver-specific miRNAs were 

identified in mice exposed to SiO2-NPs (Nagano et al., 2013). However, as the functional 

consequences of the above mentioned epigenetic alterations were not assessed, further 

characterization of miRNA responsive genes and their role in adverse effects need to be 

defined.

4. Exposure assessment

Exposure assessments primarily involve area and breathing zone monitoring, job-exposure 

matrix modeling, or exposure-banding (Kauppinen et al., 2014; Moretto, 2015; NIOSH, 

2009, 2017). Although, in recent years, there has been a growth of strong literature on task-

based environmental monitoring (Asbach et al., 2017; Brouwer, 2010; Brouwer et al., 2012; 

Eastlake et al., 2016; Methner et al., 2010a,b,2012), some challenging issues, including 

determining the best measurement metrics, availability of appropriate instrumentation, and 

diverse sampling strategies, prevent an adequate assessment of environmental exposure 

levels. Therefore, human biomonitoring (HBM) may function as a complementary means for 

exposure assessment that can take into account the inter-individual variability in absorption, 

Schulte et al. Page 9

Toxicol Lett. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolism, and excretion; the individual workload; and recent versus past exposure (Manno 

et al., 2010).

Currently there are no examples of HBM as a part of routine assessment of workers exposed 

to ENMs and no regulatory requirements are available for HBM. Nonetheless, there is a 

growing body of toxicological research that illustrates the possibility to verify some 

functional alterations detected in experimental settings as biomonitoring indicators for 

workers. For example, some ENMs can be detected in biological matrices, including blood 

or plasma, urine, and feces. Following metal- or metal-oxide-based ENM exposure, both via 

the inhalation or the intratracheal exposure (Balasubramanian et al., 2013; He et al., 2010; 

Semmler-Behnke et al., 2008; Sundarraj et al., 2017; Sung et al., 2009; Takenaka et al., 

2001, 2006; Yu et al., 2007; Zhu et al., 2009) and via human skin application (Gulson et al., 

2010, 2012), the elemental metal content is retrievable in blood, although generally in very 

small amounts. A positive dose-response relationship between the inhaled Ag-ENM and the 

Ag blood content was demonstrated in mice (Sung et al., 2009), although a differential size 

dependent biodistribution was reported for gold (Au)-NPs, because smaller 7-nm sized Au-

NPs produced a greater metal content in blood compared to their larger 20-nm counterparts 

(Balasubramanian et al., 2013).

The duration of exposure can affect the interpretations of biomonitoring data, in fact, 

significant Ag-ENM accumulation in blood was evident after 15 days of treatment, but not 

following a shorter 5 day period of exposure. This suggests that the body burden of the 

ENMs is influenced by homeostatic processes (or the exposure could also be influencing 

homeostatic activities) rather than by the extent of the exposure (Iavicoli et al., 2014a,b). 

Detectable metal concentrations were reported also in urine samples collected from animals 

treated with metal or metal oxide ENMs via the respiratory or the dermal route of exposure 

(Balasubramanian et al., 2013; Gulson et al., 2010, 2012; Sundarraj et al., 2017; Zhu et al., 

2009), but there would be no relationship described for any effect. Because of macrophage-

mediated clearance mechanisms, the measurement of the elemental metal content in feces 

may be useful to evaluate the recent/current respiratory exposure to metal-NPs 

(Balasubramanian et al., 2013; Chuang et al., 2013; Li et al., 2016; Sundarraj et al., 2017e; 

tZahlu., 2009). However,it is rather difficult to routinely employ feces as a suitable 

biological matrix for occupational biomonitoring.

Exhaled breath condensate (EBC) is a promising matrix for human biological monitoring 

investigation, as demonstrated by the increased Ti levels in pre- and post-shift EBC samples 

collected from workers exposed to TiO2-NPs in a pigment production plant compared to 

unexposed controls (Pelclova et al., 2015, 2016b). Interestingly the biological levels of such 

an indicator resulted positively correlated with the environmental concentrations in different 

production or research areas of the plant. However, not all ENMs are easily found in body 

fluids. Carbon nanotubes are one example. In fact, there is minimal transport of carbon 

nanotubes from the alveoli to the blood, and they tend to move out of the blood rapidly in to 

various organs (Erdely et al., 2009).
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5. Risk assessment

Taking into account what was previously described for ENM hazard assessment and 

exposure evaluation, it is possible to perceive the difficulties in defining suitable risk 

assessment strategies. Biological monitoring data, including biomarkers of exposure and 

effect, can be used in risk assessment involving nanomaterial workers, but thus far, there are 

no examples where biomarkers have been used in risk assessments. In this scenario, an 

exposure-response modeling should be pursued to fully exploit the potential of possible 

exposure indicators. In fact, when the dose-response relationship is defined, the biomarker of 

exposure does not only indicate the dose actually adsorbed but provides also a reasonably 

accurate quantitative estimate of the occupational risks at the group and/or individual level 

(Iavicoli et al., 2014a). Additionally, scientific efforts should be focused at employing 

biological monitoring data to develop occupational exposure limits for ENM workers. To do 

this, the relationship between biomarker levels and adverse effects must be clearly 

demonstrated in a study design that includes no-effect exposure levels.

The efforts involving categorical approaches to developing occupational exposure limits 

(OELs) are beginning to identify biomarkers to predict toxicity. For example, the 

Nanosolutions project tested 31 different engineered ENMs and, out of 8 million data points, 

identified 11 biomarkers that support the toxicity of these xenobiotics (Nanosolutions, 

2018). The response of these markers at human exposure levels must be determined. The 11 

biomarkers will then be applied in untested engineered ENMs. These and other approaches 

that used ENMs with known hazards and the biomarkers of effect related to them may 

ultimately be used in dose-response modeling.

Another area that involves biomarkers that may be useful in risk assessment and OEL 

development for ENMs is the use of “omic” technologies that may be useful to understand 

the interactions and specific pathways impacted by different ENMs. Such biomarkers should 

be carefully verified in accessible biological matrices under low-dose, long-term conditions 

of exposure to define their specificity for different ENM insults, their predictive value, and 

therefore their realistic applicability. Investigations of the effect of functional silica ENMs 

on a human lung carcinoma cell line showed that it is possible to identify an “omic” analog 

to the NOAEL involving a no observed transcriptomic effect level or NOTEL (Pisani et al., 

2015). This is the level of transcriptomic effect below which cellular responses are not seen 

to occur and may be much lower than the NOAEL. It could be used as a point of departure 

in deriving reference values. The development of pathways depicting the sequence of events 

between exposure to a stressor, progressing through intermediate events, and culminating in 

an adverse outcome is a growing concept for use in risk assessment (OECD, 2017). This 

concept may be increasingly used by regulatory agencies and, consequently, there may be 

more pressure for biomonitoring related to it.

Another relevant contribution to possible ENM-tailored risk assessment processes can be 

derived from epidemiologic studies. The review of the “first wave” of epidemiological 

studies of NM workers showed that most were too limited to indicate risk, although some 

found increased biomarkers of oxidative stress and inflammation in exposed workers (Liou 

et al., 2015). However, exposure assessment was generally qualitative, study designs were 
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generally cross-sectional, and various selection biases were possible. Therefore, suitable 

epidemiological research should be planned in order to verify environmental exposure to 

ENMs and their relationships with biological indicators of exposure and effect. However, no 

examples where biomarkers have been used in such process are currently available. Studies 

aimed to address the effectiveness of control technology in a nanomaterial workplace should 

be pursued not only as a primary way to test control effectiveness in workplaces but also as a 

useful mean to demonstrate the failure of prevention (Kreider and Halperin, 2011). It could 

be possible, in laboratory studies, to evaluate control designs and utilize a biomonitoring 

component of laboratory animals to supplement airborne exposure measures. Biological 

monitoring may be even more important, in consideration of the possible absorption of 

ENMs through the dermal route of exposure especially in conditions of compromised skin 

integrity due to pre-existing diseases or damaging coexposures (Brouwer et al., 2012; 

Gulson et al., 2010, 2012; Larese Filon et al., 2016; Osmond-McLeod et al., 2014).

6. Risk management

Biomonitoring is a risk management tool along with workplace exposure assessment and 

exposure controls. In this context, biological monitoring data could be used effectively to 

verify the efficacy of the exposure limit in protecting the health of the workers (Iavicoli et 

al., 2014a,b). At present, the utility of biomonitoring nanomaterial workers depends on the 

status of evidence about the hazard of particular ENMs that could be the target of 

biomonitoring. Biomonitoring should not be used as a substitute for controlling exposure or 

for taking precautionary control measures.

An additional application of biological monitoring in risk management is the medical 

surveillance of workers. This is the effort to assess asymptomatic workers for early 

indications of health problems. There are currently no mandated medical surveillance 

guidance for ENM workers except for ones involving baseline and period respiratory 

assessment (pulmonary function testing, x-ray) (NIOSH, 2013). No cellular or molecular 

biomonitoring is mandated. There is a sparse literature studying the effectiveness of medical 

surveillance for nanomaterial workers. Gulumian et al. (2016) conducted a review of 

structures of medical surveillance of nanomaterial workers and identified seven studies that 

met inclusion criteria. They concluded that there was very low quality of evidence that 

screening might detect adverse health effects associated with workplace exposures to ENMs. 

However, this study conflated epidemiological studies and medical surveillance and, as 

noted earlier, there has not been much time since first worker exposure and the possibility of 

identifying health effects in epidemiological studies in routine medical surveillance.

One further area of risk management that involves biomarkers of exposure and effect and 

shows great promise is to design out potential hazards in ENMs. This is known as prevention 

through design or “safety by design” (Geraci et al., 2015). The concept is illustrated by the 

identification of specific toxic endpoints that were observed after zebra fish were exposed to 

functionalized ENMs. This study allowed for the development of predictive models for the 

design of inherently safer ENMs. Similarly biomarkers found in large arrays in ENM studies 

may be the basis for material designs that will have reduced ENM hazards.
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7. Research needs

For biological monitoring of nanomaterial workers to go forward, there is need for robust 

research to develop biological monitoring protocols (Iavicoli et al., 2014a,b). This should 

include the physico-chemical characterization of materials to which a population is exposed 

and well established understanding of toxico-kinetic and dynamic characteristics. This 

research may result in the determination of whether biological monitoring should measure 

direct parent compounds or possible metabolites or decomposition products. It may explain 

also the possible role of biomolecular corona formation in affecting ENM bio-disposition 

and, consequently, biomonitoring results.

There is an evident need to link biomarkers in experimental animals to biomarkers in 

humans. Candidate biomarkers must be validated with exposure and/or effects (Bergamaschi 

et al., 2015). Additionally, considering the extremely high doses frequently employed in 

experimental settings and the extremely low ENM retrieved fractions in biological fluids, 

potential biomarkers should be validated under low-doses and longer periods of treatment, 

through analytical techniques sensitive enough to address trace levels of biological markers. 

Moreover, the predictive significance of such biological monitoring alterations in terms of 

long-term effects, the influences exerted by ENM characteristics, modes and periods of 

exposure, and inter- and intra-individual variabilities should be assessed to define suitable 

biomarkers and accurate interpretation of their results.

Validation is a process—a sense of degree rather than an all-or-none-state (IPCS, 2001). 

Validation includes assessment not only of sensitivity, specificity, and predictive value, but 

also utility in studies of workers on a routine basis. Ultimately validation and developmental 

research to identify biomarkers for biomonitoring of workers will require human studies; 

these may be field, chamber, or epidemiologic studies. Such studies require attention to 

ethical legal and social issues. Of importance are issues of privacy, confidentiality, and 

notification of test and study results (Schulte and Smith, 2011).

8. Conclusion

There are no authoritative mandates or requirements currently available for biomonitoring of 

ENM workers. However, there is a growing body of research that is setting the stage for the 

use of bio-monitoring to supplement environment exposure assessments to achieve a suitable 

ENM risk assessment and management in occupational settings. Biomarkers may be 

particularly useful when exposure results in systemic effects. Biomonitoring requires the 

determination of the extent of the hazard of candidate nanomaterial and evidence that 

demonstrates biomarker presence in workers correlates with exposure. Biomarkers of effect 

may also be used to assess exposure and have similar developmental requirements as 

biomarkers of exposure with the additional need to account for non-specificity and 

homeostatic influences. If biomonitoring is to be used to assess early or potential health 

effects, there will be a need for prospective studies to support that use. Overall, there is a 

rich research base for biomonitoring. However, further work is required before 

biomonitoring workers can be routinely implemented.
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Fig. 1. 
Framework for literature search strategy.

Schulte et al. Page 30

Toxicol Lett. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Conceptual timeline for growth of nanomaterial products.
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Table 1

General Overview of Toxicology Findings for ENMs to date.

•Verified the correlation of particle surface area with biological effects (Duffin et al., 2001; Schmid and Stoeger, 2016)

•Confirmed that particle size is generally an important factor in toxicity but other physico-chemical factors may play major roles (Driscoll, 
1996; Oberdörster et al., 2005)

•Confirmed that nanoparticles could reach the alveoli and could enter the interstitium and blood stream (Kreyling et al., 2009; Oberdӧrster et al., 
1992)

•Demonstrated that pulmonary exposure to carbon nanotubes (CNTs) causes alveolar interstitial fibrosis, which develops rapidly and is 
persistent. Fibrotic potency appears related to the physicochemical properties of the CNT (Shvedova et al., 2005)

•Demonstrated that pulmonary exposure to nanoparticles can cause cardiovascular effects (alteration of heart rate and blood pressure, and 
microvascular dysfunction) (Li et al., 2007; Nurkiewicz et al., 2008)

•Demonstrated that pulmonary exposure to some nanomaterials may be carcinogenic (Kuempel et al., 2017; Rittinghausen et al., 2014; Sargent 
et al., 2014)

•Demonstrated that multi-walled carbon nanotubes (MWCNTs) (Mitsui-7) are a promoter of lung cancer (Kuempel et al., 2017)

•Demonstrated that nanoparticles deposited in the lung can translocate to distal sites (Aragon et al., 2017; Erdely et al., 2009; Mercer et al., 
2013) Demonstrated that insoluble nanoparticles do not appear to rapidly cross intact skin (Prow et al., 2011)

•Demonstrated that nanoparticle penetration through intact skin is not likely but exposure to sensitizers and irritants still a concern (Gwinn and 
Vallyathan, 2006; Prow et al., 2011)
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